
Neural Network Model of Short-term Horizontal
Disparity Vergence Dynamics*
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We present a neural network model of short-term dynamics of the human horizontal vergence
system (HVS) and compare its predictions qualitatively and quantitatively with a large variety of
horizontal disparity vergence data. The model consists of seven functional stages, namely: (1)
computation of instantaneous disparity; (2) generation of a disparity map; (3) conversion of the
disparity into a velocity signal; (4) push–pull integration of velocity to generate a position signal; (5)
conversion of the position signal to motoneuron/plant activity for each eye; (6) gating of velocity
overdrive signal to motoneuron/plant system; and finally (7) discharge path for position cells.
Closed-loop (normal binocular viewing) symmetric step and staircase disparity vergence data were
collected from three subjects and model parameters were determined to quantitatively match each
subject’s data. The simulated closed-loop as well as open-loop (disparity clamped viewing)
symmetric step, sinusoidal, pulse, staircase, square and ramp wave responses closely resemble
experimental results either recorded in our laboratory or reported in the literature. Where
possible, the firing pattern of the neurons in the model have been compared to actual cellular
recordings reported in the literature. The model provides insights into neural correlates underlying
the dynamics of vergence eye movements. It also makes novel predictions about the human
vergence system.*C 1997 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

The human horizontal vergence system (HVS) produces
the disjunctive ocular movements that are needed to
maintain clear single vision when a binocular target
moves in depth. These disjunctive movements result in
increased convergence of the two eyes when the target
moves from far to near and vice-versa. One of the most
significant external inputs to the HVS is horizontal retinal
disparity (Madox, 1907; Westheimer & Mitchell, 1956;
Riggs & Niehl, 1960). There are other stimulus cues like
blur, perceived distance, loom etc. that also affect the
performance of the HVS but generally, supra-threshold
luminance and chromatic properties of the stimulus do
not affect it (Livingstone & Hubel, 1987). Some

fundamental properties of the HVS have been established
since the late 1950s, mainly by application of classical
control theory. It has been shown that the HVS is
primarily an integral controller with continuous feedback
(Rashbass & Westheimer, 1961a). It has a typical delay
of about 160 msec and possesses low-pass temporal
frequency characteristics (Rashbass & Westheimer,
1961a). Furthermore, it has been shown that it operates
largely in parallel (not necessarily noninteractively;
Erkelenset al., 1989a) with circuits controlling conjugate
eye-movements (Rashbass & Westheimer, 1961b). The
HVS also exhibits a “predictive” behavior in response to
smooth and repetitive stimuli (Rashbass & Westheimer,
1961a).

Various studies have shown that HVS is nonlinear and
adaptive (Sethi, 1986). Therefore, analytical tools from
linear time-invariant system theory could not be directly
applied to study thedynamicsof the HVS. In fact,
control-type dynamic models (Rashbass & Westheimer,
1961a; Krishnan & Stark, 1977; Schor, 1979; Hunget al.,
1986; Schor, 1992; Pobuda & Erkelens, 1993) have not
been tested extensively with a wide variety of short-
termk vergence dynamics data.

The first model by Rashbass and Westheimer (1961a)
captured the most significant integral-type behavior of
the HVS and clearly identified the linear relationship
between disparity and vergence velocity. However, their
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model failed to explain the open-loop sinusoidal phase
responses and the open-loop ramp responses. The authors
attempted to explain the discrepancies between theore-
tical and experimental phase responses by using higher-
order disparity information. The models by Krishnan and
Stark (1977) and Schor (1979, 1992) established a
general principle of parallel slow and fast pathways. In
addition, Schor’s model includes accommodation–ver-
gence interactions as well as long-term adaptation
effects. The dual-mode model of Hunget al. (1986)
was the first one to apply nonlinear control mechanisms
to the vergence system. This model, in which vergence
velocity and acceleration are used to predict position,
produced convincing fits to closed-loop ramp responses.
However, the model generated significantly distorted
responses to closed-loop sinusoidal stimuli of frequencies
>0.3 Hz. Furthermore, no open-loop responses were
reported by Hunget al. and without an adequate
description of certain (predictor and sampler) compo-
nents of the model, the open-loop behavior of the model
remains unknown. The recent model by Pobuda and
Erkelens (1993) also uses nonlinear control mechanisms
and shows improvement over the previous models in
open-loop sinusoidal phase response characteristics. The
model treats disparity as a spatio-temporal quantity and
uses parallel disparity channels, each of which is a
different first-order low-pass filter that responds only to
disparity within its tuned range. The open-loop phase
responses in this model result mainly from differently
tuned parallel channels. In addition, the oscillations seen
during closed-loop step vergence responses come from
these parallel channels.

A significant behavior exhibited by all the models
[except Rashbass & Westheimer (1961a)] arises due to
the presence of leakiness in the modeled open-loop
system. The leakiness in the vergence system implies that
it returns to its resting state in the absence of a binocular
target and is used to explain the decay of vergence
posture in darkness. However, leakiness in the vergence
system also predicts that the vergence response would
reach a steady-state under open-loop step disparity
conditions which means that even in presence of
sustained disparity, the vergence posture would not
change. Furthermore, in the linear range of operation,
the steady-state vergence posture in the open-loop
condition would be linearly related to the amplitude of
the step disparity. This open-loop steady-state behavior is
predicted by most of the models (Krishnan & Stark, 1977;
Schor, 1979; Hunget al., 1986; Schor, 1992; Pobuda &
Erkelens, 1993) except Rashbass and Westheimer’s
model (Rashbass & Westheimer, 1961a). In order to
support the open-loop steady-state behavior exhibited by
their model, Pobuda and Erkelens have presented
experimental data showing vergence response reaching
a steady-state before physiological eye rotation limit,
even for a very small amplitude disparity step. However,
these findings have not yet been replicated in other
laboratories. More fundamentally, the question then
arises as to why the eyes would cease to move in spite

of persistent disparity when disparity is believed to be the
driving signal for the vergence system. There is a
significant asymmetry in convergence and divergence
dynamics (Krishnan & Stark, 1977) that cannot be
explained by any existing model. Further, none of the
existing models is able to explain the open-loop
sinusoidal phase characteristics while still maintaining
the integral nature of the system.

Moreover, while each of these models was successful
in explaining some characteristics of the HVS, due to the
limitations of the modeling approach, physiological
findings could not be directly used. Control type
modeling is essentially a behavioristic approach where
a “black box” representation of the system is derived
from its input–output (stimulus-response) characteristics.
For example, most control theory models of HVS use
disparity as input and vergence eye-position as output
without specifying how disparities are computed from
retinal activities and how motoneurons are driven to
generate the desired disjunctive movements. This tells us
very little about the details of the neural circuits that
control the behavior. These limitations of the “black box”
modeling approach led to a complementary approach that
is built around a network of neurons that aim to capture
both the architecture and the function of the circuits
under study by using neurophysiological, anatomical, and
behavioral data. In this paper we propose a neural
network model for short-term dynamics of HVS and test
it extensively by comparing simulated vergence re-
sponses with a variety of experimental data.

GENERAL DESCRIPTION OF THE MODEL

The main idea behind the model is that the goal of the
HVS is to provide the disjunctive oculomotor drive
needed to reduce the disparity signal and thereby to move
the geometric centroid of the selected target to the central
part of the fovea of each eye. The general structure of the
model consists of seven functional stages as shown in
Fig. 1.

The model assumes the existence of retinotopic maps
where localized and normalized activities are generated
corresponding to the retinal locations of the target in the
two eyes. The retinotopic maps, callednormalized
retinotopic maps(NRM), are separate for each eye as
somewhat suggested by earlier studies (Westheimer &
Mitchell, 1969). The activity in each NRM is normalized
in that it does not depend on the luminance or other
features of the target. It simply codes the location of the
target on each retina. Such a mechanism can partially
explain the movements induced by dissimilar targets in
each eye (Westheimer & Mitchell, 1969), because the
movement circuitry only requires an activity correspond-
ing to the location of a target in each eye.

(1) Computation of instantaneous disparity

In this stage, the localized activities in the NRM are
used to detect instantaneous disparity by a pool of
neurons termed as disparity detectors. Each of these
detectors receives one input from the left NRM and one
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input from the right NRM and therefore has a binocular
receptive field. A detector becomes active only if the
corresponding retinotopic cells that feed into it are
simultaneously active. Hence, when active, a detector
signals a retinal disparity equal to the difference of
retinotopic positions of its input neurons. By arranging
these neurons into a spatial map indexed by disparity, we
obtain a “diamond shaped” spatial map of disparity
detectors as shown in Fig. 2. Only the cell that receives
inputs from the two active cells in the NRMs is active
(indicated by black in Fig. 2); all other cells in the map
are inactive. For simplicity, population coding of
disparity detectors is avoided. It should, however, be
noted that each cell in the map represents a population
effect. This is the area where the sensory drive consistent
with Hering’s hypothesis for the disjunctive movement is
extracted (Hering, 1868). It should be noted that for
purely conjugate movements, only the detectors corre-
sponding to zero disparity are activated, thus eliminating
the driving signal to the following vergence motor
circuitry. For stimuli that generate combined version-
vergence movements, this circuit only extracts the
disjunctive component.

(2) Generation of a disparity map

A given disparity can be detected by various detectors
(the vertical dimension of the diamond map). In order to

generate a unique spatial coding for disparities, different
cells that detect the same disparity (i.e. cells aligned in
the vertical dimension of the diamond map) project to
one disparity coder to generate a one-dimensional spatial
map of disparity as shown in Fig. 2. Again consistent with
Hering’s hypothesis, the disparity code formed is
independent of the conjugate component of the stimulus.
Disparity tuned cells were first studied extensively in the
visual cortex of the cat (Barlowet al., 1967; Nikaraet al.,
1968; Pettigrewet al., 1968) to understand stereoscopic
depth perception. Similar cells were also found in the
monkey visual cortex (Hubel & Wiesel, 1970; Poggio &
Ficher, 1977; Maunsell & Van Essen, 1983; Royet al.,
1992). However, it is not clear if the same cells or a
separate set of cortical or sub-cortical cells convey the
disparity information needed for vergence movements.

(3) Conversion of the disparity into a velocity signal

The activity in the disparity map corresponding to a
convergence (or divergence) demand is converted to a
velocity signal for a convergence (or divergence) move-
ment. The conversion is achieved by setting the synaptic
strength of the connections between a neuron in the
disparity map and the velocity cell to a value proportional
to the magnitude of the disparity. The justification to use
this mechanism for the vergence system comes from the
fact that the velocity of open-loop vergence step

FIGURE 1. The overall block diagram of the model of the horizontal
vergence system. The solid lines with arrows represent the primary
signal path. The dotted lines represent the external visual feedback.
The solid lines with rectangular connections show modulatory signals.
For intersecting lines, a dark spot indicates a connection. The sensory
stages of the model are displayed in the shaded region and the motor
stages in the unshaded region. The numbers in the boxes correspond to

those of the stages described in the text.

FIGURE 2. Sensory stages of the model [stages (1) and (2)]. To
prevent clutter, only the connections of the active neurons, illustrated
in black, are shown. In this and the following figures, a circle
represents a neuron and a solid (dotted) line connecting the neurons
represent excitatory (inhibitory) synapse. In each normalized retino-
topic map (NKM), a binocular target activates a cell representing the
geometric centroid of the target image. The activity in NRMs in turn
activates a disparity detector cell in the diamond topology. Each
column in this topology represents a particular disparity level. The
maximum convergent disparity detector and the maximum divergent
disparity detector are located at the left and the right, respectively.
Cells in the diamond topology that detect the same disparity project to

a single cell coding that particular disparity.
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responses is linearly related to disparity (Rashbass &
Westheimer, 1961a). Accordingly, as shown in Fig. 3,
disparity coders with positive (negative) disparities send
excitatory projections to convergence (divergence)
velocity cells with weights proportional to the amount
of disparity. Such vergence velocity (burst) cells have
been found in the monkey midbrain (Mayset al., 1986).

(4) Push–pull integration of velocity to generate position
signal

The velocity cells project to nonleaky position
integrators in a push–pull manner. In other words, the
convergence (divergence) velocity cell sends excitatory
projections to a convergence (divergence) position cell
and inhibitory projections to a divergence (convergence)
position cell as shown in Fig. 3. Vergence position cells
are also found in the monkey midbrain (Mays, 1984). For
simplicity, we do not explicitly mention or use inter-
neurons that may be needed for such a bipolar axonal
connectivity. The existence of such integrators and how
they are implemented in neural systems is not clear
though several mechanisms have been suggested (Car-
penter, 1988). From recent physiology in primates, it is
also known that the abducen internuclear neurons carry
an inappropriate signal during vergence movements
(Gamlinet al., 1989). The negative effect of this pathway
has to be canceled by an overdrive from another pathway.
This suggests an asymmetry in the firing pattern of
convergence and divergence position cells. For a
symmetric convergent movement, the convergence posi-
tion cell which projects to the medial rectus motoneurons,

must have a larger change in firing rate from the resting
rate than the divergence cell. We have ignored this
mechanism in our model due to the lack of existence of a
conjugate system in the model.

(5) Conversion of the position signal to motoneuron
activity

The convergence and divergence position cells finally
project to corresponding pools of medial and lateral
rectus motoneurons. These motoneurons innervate the
corresponding muscles responsible for horizontal eye
movement. The convergence (divergence) position cells
send excitatory projections to the medial (lateral) rectus
motoneurons of both eyes as shown in Fig. 3. The
motoneurons also receive inputs from corresponding
velocity cells (Robinson, 1970; Keller, 1981; Gamlin &
Mays, 1992). This velocity input plays a very important
role in shaping the phase characteristics of sinusoidal
vergence responses. For simplicity, in our model, we treat
the motoneurons and plant as a single first-order system.

(6) Gating of velocity overdrive signal to motoneuron/
plant system

The open-loop sinusoidal phase response of the
vergence system (Rashbass & Westheimer, 1961b)
differs markedly from that of a pure integral controller
and suggests the involvement of a phase-lead compensa-
tion mechanism. In control theory, phase-lead compensa-
tion is used to improve the stability margin of the system
and thereby to reduce the adverse effect of parasitic
delays. A constant velocity input to the motoneurons has

FIGURE 3. Sensory-motor transformation and the motor stages of the model [stages (3)–(7)]. In this and all following figures,
for intersecting lines, a dark spot indicates a connection; a dotted line indicates an inhibitory connection. The graded
connectivity between the disparity coder cells and the velocity cells is shown by the triangular section on both sides of the figure.
The VODC is shown as a gray section. Velocity cells (D, divergence and C, convergence) project via the VOGC and the position
cells (D, divergence and C, convergence) to lateral and medial rectus motoneurons (LR and MR). The VOGC receives control
information from the VOCC. The active turn-off circuit discharges the position cells in the absence of a target. The details of

VOCC, VOGC, and active turn-off circuitry are given in the following figures.
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been previously proposed to overcome the viscous
impedance in the muscles and orbit (Robinson, 1981).
We have introduced a phase-lead to our model by a
velocity overdrive circuit (VODC) with discrete parallel
channels, each gated by a preset velocity threshold as
shown in Fig. 4. The parallel channels generate a variable
velocity input for the motoneurons as a function of
velocity, in particular a high input for low velocities and a
low input for high velocities. For simplicity we used only
three parallel channels in our simulations. However, in
the vergence system there would be a large number of
parallel channels providing a finer resolution, thus
resulting in a smoother velocity control mechanism.

The VODC consists of one velocity overdrive control
circuit (VOCC) and two velocity overdrive gate circuits
(VOGC), one for each muscle. In order to provide an
adaptive velocity control, a fast estimate of velocity is
computed by the VOCC. This predicted velocity is used
to gate the appropriate velocity channels of the VOGC.
As shown in Fig. 4(b), the gate switching signals (V1, V2,
V3) are derived from velocity predictor cells. The
convergence velocity predictor cell receives input via a
graded excitatory (inhibitory) connectivity directly from
the temporal (nasal) side of the NRM of each eye. The

connectivity for the divergence velocity predictor cell is
complementary (negative) of that of the convergence
cell. Each velocity trigger cell in VOCC senses the
velocity level and fires if the velocity level exceeds the
cell’s threshold (different for each cell). In our recruit-
ment scheme, threshold increases from V1 to V3. Thus at
the smallest velocity, V1 would be active, at some
intermediate velocity V1 and V2 would be active and at
velocity above a certain level, all of them would be
active. The velocity trigger cells then activate the
velocity gate control cells which have a fast on-time
and a very slow off-time.

The velocity gate control cells in VOCC strongly
inhibit the velocity overdrive gate cells (VOG) in VOGC
and keep them inactive for a significant period of time (ca
1 sec). As shown in Fig. 4(a), the signal from the
vergence velocity cell is simultaneously sent to all VOGs.
Hence if all gate cells are active, the signal sent to the
plant via the summing cell is maximal. During step
movements, all gate cells are off, hence reducing the
velocity drive that may have otherwise caused oscilla-
tions. For low and medium frequency sinusoidal stimuli
(0.05–0.4 Hz), all or some of these cells are active, thus
providing a velocity overdrive and causing a phase-lead.
It should be noted that the velocity predictor cells, which
are also active during monocular viewing, only provide a
gate control signal hence they have no effect if a
disjunctive stimulus is absent. There is some experi-
mental evidence supporting the hypothesis that a velocity
driven signal contributes to the control of vergence eye-
movements in primates and that the contribution of this
velocity drive is different during sinusoidal and step
stimulation of the vergence system (Gamlin & Mays,
1992).

(7) Discharge path for position cells

The nonleaky nature of position integrators implies

FIGURE 4. Components of the VODC. (A) The VOGC for lateral
rectus. The circuit for the other muscle is identical. The velocity signal
passing through the gate cells is derived from the divergence velocity
cell. (B) The VOCC receives its input from both NRMs. The velocity
predictor cell labeled C (D) predicts convergence (divergence)
velocity. The convergence velocity predictor cell has a graded input
connectivity (shown by triangular sections) from the NRMs. The
divergence velocity predictor cell has the same graded connectivity

from NRMs but with a negative sign applied to each input.

FIGURE 5. Active turn-off circuit. The activity detectors signal the
presence of a binocular visual target. The turn-off switches act on the
position cells in a push–pull manner. The rest of the circuit is not

shown and is indicated by lines without originating circles.
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that, in the absence of an input, the eyes maintain their
position. An active turn-off circuit is introduced to move
the eyes to their “resting positions” in the absence of
activity in the disparity coders (see Fig. 5). This
mechanism provides independent control of dark-ver-
gence dynamics from stimulus-driven dynamics.

METHODS

Closed-loop vergence responses to step, staircase and
sinusoidal stimuli were measured in human subjects, to
compare with similar data in the literature and the
simulated responses of our model. Three naı¨ve volunteers
(LFH, NYN, and VTA) with normal binocular vision
participated in the experiments. We developed a
Macintosh-based system to concurrently provide ver-
gence stimuli and record binocular eye movements. The
vergence stimuli were rectangular targets (9 deg in height
and 0.35 deg in width) presented haploscopically, using
two computer monitors viewed separately by each eye
from mirrors at 45 deg from the line of sight. The white
rectangular targets on black backgrounds were the only
targets visible during the experiments. For step stimuli,
the symmetrical vergence demand alternated between
0 deg and several different levels of convergence (up to
4 deg). All step stimuli were presented for a maximum of
5 sec to minimize adaptation effects. For sinusoidal
stimuli, the symmetrical vergence demand varied 2 deg
peak-to-peak around 2 deg of convergence, at six
frequencies between 0.05 and 3.2 Hz. The rectangular

targets also acted as accommodative stimuli, fixed atca
0 diopters (achieved by placing convex lenses in the
optical path of each eye).

Vergence eye movements were recorded using two
dual Purkinje-image eye trackers (Crane & Steele, 1978).
The eye trackers generate a voltage signal proportional to
horizontal eye position which was digitized, sampled at
60 Hz and stored by the computer. Since the gain of the
disparity vergence system drops about 40 dB at 1.5 Hz
(Zuber & Stark, 1968; Pobuda & Erkelens, 1993), a
60 Hz sampling rate is more than adequate. A signal
representing the position of each target on the monitor
was generated on D/A converters and re-sampled and
stored along with the eye position signals. Before
collecting the vergence data, a monocular calibration
procedure was run on each eye. During the calibration
procedure, the target stepped horizontally from 0 to 4 deg
in steps of 1 deg. After calibrating each eye’s position
data independently, the vergence response was computed
by subtracting the position data of the two eyes. All data
were analyzed using the signal processing package
AcqKnowledge (Biopac Systems Inc.). The step and
staircase responses were averages of two trials.

Simulation methods are given in Appendix B.

RESULTS

All subjects exhibited qualitatively similar results as
reported in the literature (Riggs & Niehl, 1960; Rashbass
& Westheimer, 1961a; Zuber & Stark, 1968; Krishnan &

FIGURE 6. Closed-loop step, staircase and short-pulse responses. For this and all the following figures: (i) deviations in
vergence position traces towards the top indicate increased convergence. (ii) An arrow without a label indicates stimulus onset
or offset. (a)–(c) Experimental and simulated closed-loop 2-deg step response for subjects LFH, NYN, and VTA, respectively.
The step duration was 5 sec. (d)–(f) Experimental and simulated closed-loop staircase response for subjects LFH, NYN, and
VTA, respectively. Each step was 2 deg and the step duration was 5 sec. (g) Simulated closed-loop short-pulse responses to 100

and 500 msec pulse stimulus. The pulse stimulus amplitude was 2 deg.
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Stark, 1977; Hunget al., 1986; Erkelenset al., 1989b;
Pobuda & Erkelens, 1993) in all experiments. Step and
staircase responses were obtained for all the subjects
while sinusoidal responses were obtained only for one
subject (LFH). Model parameters were adjusted so that
model responses approximated the step and staircase data
for all the subjects, and for one subject (LFH) a single
parameter set was obtained to approximate the step,
staircase, and sinusoidal data.

Closed-loop responses

Our closed-loop step responses show the typical
characteristics reported in the literature (Rashbass &
Westheimer, 1961a): a 160 msec delay, a fast “open-
loop” initial response followed by a slow completion
(Semmlowet al., 1993) with small oscillations (Rashbass
& Westheimer, 1961a) as shown in Fig. 6(a–c). Our
closed-loop staircase responses shown in Fig. 6(d–f)
indicate the typical motor linearity associated with
vergence movements.

The experimental and simulated closed-loop step
responses [Fig. 6(a–c)] are qualitatively very similar.
Quantitatively, for subject LFH, the overshoot observed
during step divergence [downward deflection in Fig. 6(a)]

FIGURE 7. Closed-loop ramp responses. (a) Simulated closed-loop responses to convergent ramps from 0.7 to 36 deg/sec are
shown in the left panel. The peak amplitude was 4 deg. The computed velocity traces for the responses in the left panel are
shown in the right panel. (b) Experimental recordings obtained by Semmlowet al. (1986). The left column shows the position
traces while the right one shows the corresponding calculated velocity traces. Reprinted with permission from the journal

Investigative Ophthalmology & Visual Science.

FIGURE 8. Ramp stimulus-response curves. (a) Simulated stimulus-
response curve for various ramp velocities from 0.7 to 36 deg/sec. The
value used for this plot is the maximum velocity. Notice the saturation
in the curve. (b) Peak ramp response velocity vs stimulus velocity
obtained by Semmlowet al. (1986). Reprinted with permission from

the journalInvestigative Ophthalmology & Visual Science.
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is somewhat different. These differences are not in the
initial fast part of the response but in the final settling part
and are dictated by the limited resolution of the NRM in
our simulations. The subjects NYN and VTA showed less
pronounced oscillations [Fig. 6(b–c)] during the comple-
tion phase and the model fits for them were obtained by
reducing the velocity input to the motoneurons/plant
system (see parameters in Appendix B). Subject VTA
showed symmetric convergence and divergence char-
acteristics [Fig. 6(c)] that were modeled by symmetric
sensorimotor transformation (see parameters in Appen-
dix B).

The experimental and simulated closed-loop staircase
responses [Fig. 6(d–f)] are also qualitatively very similar.
Subject VTA [Fig. 6(f)] showed superior linearity
characteristics over the other subjects hence its staircase
data were modeled by a smaller synaptic gain at the
position cells and a proportionally larger gain at the
motoneurons/plant (see parameters in Appendix B). The
simulated pulse responses shown in Fig. 6(g) exhibit
general characteristics of the HVS reported in the
literature (Rashbass & Westheimer, 1961a; Zuber &
Stark, 1968). The smallest pulse-width that generated a

simulated response was 100 msec which can be attributed
to the rise-times of the cells in the NRM. If enough time
is not allowed for these cells to rise above the threshold of
the disparity detectors, no response can be generated.
This mechanism generates response delays larger than
those predicted by axonal and synaptic delays. Since a
major portion (100 msec) of the delay was exhibited at
the stage between the NRM and the disparity detectors,
the delay mechanism is not a pure delay as previously
proposed (Rashbass & Westheimer, 1961a). However, if
this delay is distributed such that a maximum delay of
20 msec is introduced at each processing stage, then the
model will respond to a minimum pulse of 20 msec while
maintaining the large total delay.

FIGURE 9. Closed-loop sinusoidal responses. (a) Experimental
closed-loop sinusoidal responses for frequencies from 0.05 to 3.2 Hz
and peak to peak amplitude of 2 deg. The sinusoidal stimulus was
applied after an initial convergent step of 2 deg. (b) Simulated closed-
loop sinusoidal responses for frequencies from 0.05 to 3.2 Hz and peak
to peak amplitude of 2 deg. The sinusoidal stimulus was applied after
an initial convergent step of 2 deg. (c) and (d) are experimental closed-
loop sinusoidal gain and phase plots, respectively. (e) and (f) are
simulated closed-loop sinusoidal gain and phase plots, respectively.

FIGURE 10. Open-loop step, ramp and square-wave responses.
(a) Simulated open-loop step response to a disparity step of 0.4 deg.
(b) Open-loop response to a disparity step recorded by Rashbass and
Westheimer (1961b). (c) Simulated open-loop response to a square
wave of 0.6 Hz with a peak to peak amplitude of 0.4 deg. (d) Open-
loop square wave response recorded by Rashbass and Westheimer
(1961b). (e) Simulated open-loop response to a ramp of 1 deg/sec
without velocity input is shown in the top panel and with velocity input
is shown in middle panel. The stimulus is shown in bottom panel. The
thick vertical line in each panel indicates the instant of zero disparity
crossing. To the left (right) of the thick line, the disparity is negative
(positive). (f) Simulated open-loop convergence velocity vs step
disparity amplitude fromÿ3.5 up to 3.5 deg. (g) Experimental data
establishing the relationship between disparity amplitude and vergence
velocity from Rashbass and Westheimer (1961a). The open circles
represent data points obtained from the initial phase (<160 msec) of
the closed-loop step responses while the dark circles are true open-loop
data points. Figures from Rashbass and Westheimer (1961a,b)

published with permission from the Physiological Society.
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FIGURE 11. Open-loop sinusoidal responses. (a) Simulated open-loop sinusoidal response at 0.1 Hz and peak to peak amplitude
of 0.4 deg. The sinusoidal stimulus was applied after an initial convergent step of 2 deg. (b) Simulated stimulus–response curve
for various sinusoidal amplitudes from 0.1 to 3.2 deg at a frequency of 0.5 Hz. (c) Simulated open-loop sinusoidal gain
response, the peak to peak stimulus amplitude was 0.4 deg. The circles are with velocity overdrive and crosses are without it. (d)
The open-loop phase response for the same simulations. Again the circles are with velocity overdrive and crosses are without it.

FIGURE 12. Neurophysiology and correlated model cells. In all the panels, the top trace is vergence movement and the bottom
trace is the firing pattern in spikes per second. For this and all the following figures, an upward deviation in traces showing firing
pattern indicates increased firing rate. The vergence step was 4 deg from a straight ahead 0 deg position for all movements,
experimental and simulated. (a) Firing rate profile of a convergence cell in a monkey during vergence movements as recorded by
Mays (1984). The left column shows behavior during convergence and the right one shows the behavior of the same cell during
divergence. (b) Similar profile as in (a) for a divergence cell recorded by Mays (1984). (c) Firing rate profile of a convergence
burst cell in a monkey during vergence movements as recorded by Mayset al. (1986). The left column shows behavior during
convergence and the right one shows the behavior of same cell during divergence. (d) Similar profile as in (c) for a divergence
burst cell recorded by Mayset al. (1986). (e) The firing pattern of a model convergence position cell during vergence
movements. (f) The firing pattern of a model divergence position cell during vergence movements. (g) The firing pattern of a
model convergence velocity cell during vergence movements. (h) The firing pattern of model divergence velocity cells during

vergence movements. Figs 12(a)–(d) have been reprinted with permission from the American Physiological Society.

NEURAL NETWORK MODEL OF SHORT-TERM HORIZONTAL DISPARITY VERGENCE DYNAMICS 1391



The simulated closed-loop ramp responses and their
corresponding velocities are shown in Fig. 7(a). For
comparison purposes data taken from Semmlowet al.
(1986) are shown in Fig. 7(b). For low ramp velocities,
smooth ramp responses and constant velocities are
observed in both simulated and experimental data. For
higher velocities, the response velocity is no longer
constant but exhibits oscillations which correspond to
step-like behavior in the position traces. Our model
suggests that the oscillations in the response velocity are
caused by the contribution of the velocity input (VODC)
to motoneurons, in that the model in pure position control
mode does not exhibit such oscillations. Furthermore, in
both simulated and experimental data, the peak response
velocity saturates as shown in Fig. 8. We believe that
quantitative differences, such as the saturation level,
come from inter-subject variability.

The experimental and simulated closed-loop sinusoidal
responses are shown in Fig. 9(a) and (b). Micro-
oscillations are seen in experimental as well as simulated
data for lower frequencies. In the simulations, the micro-

oscillations are due to the high velocity gain provided by
the VODC. As frequencies become higher, this overdrive
mechanism is turned off and the HVS returns to a
dominant position control mode, thus making the
responses smoother. The corresponding experimental
gain and phase plots are shown in Fig. 9(c) and (d). They
closely resemble the simulated gain and phase plots
shown in Fig. 9(e) and (f). The simulated dark-vergence
dynamics (not shown) exhibited the decay characteristics
similar to the experimental data (not shown). The dark-
vergence dynamics are achieved by the active turn-off
circuits employed in the model.

Open-loop responses

Because the continuous feedback compensation is
eliminated, open-loop responses reveal more directly the
characteristics of a system and thus offer a critical test to
models. The open-loop simulation results presented here
were obtained by using the same parameters that were
used for closed-loop simulations. As shown in Fig. 10,
the simulated open-loop step response exhibits an
integral nature very similar to the experimental recording
(Rashbass & Westheimer, 1961a) shown in Fig. 10(b).
The simulated open-loop square-wave response is a
drifting triangular waveform as shown in Fig. 10(c),
similar to the experimental recording (Rashbass &
Westheimer, 1961a) shown in Fig. 10(d). Our model
suggests that this drift in open-loop response originates
from the lack of feedback and the asymmetry between
convergence and divergence characteristics. The simu-
lated open-loop ramp response is shown in Fig. 10(e).
The use of velocity information by the motoneurons/plant
system in our model clarifies why the open-loop ramp
response crosses the zero disparity pointbefore the
stimulus, an observation made by Rashbass and Westhei-
mer (1961a). This is illustrated through simulations of the
model with and without velocity control as shown in Fig.
10(e). As seen in experimental data taken from Rashbass
and Westheimer (1961a) [Fig. 10(g)], under open-loop
conditions the model exhibits a nearly linear relationship
between vergence velocity and disparity amplitude [Fig.
10(f)]. The scales of Fig. 10(f) and Fig. 10(g) are different
because of a larger range requirement for the velocity
axis for modeled data.

The simulated open-loop sinusoidal response is a
drifting sinusoid as shown in Fig. 11(a). Figure 11(b)
shows peak-to-peak vergence amplitude as a function of
peak-to-peak stimulus disparity. Corresponding experi-
mental data (Rashbass & Westheimer, 1961a) (not
shown), are confined to a small range of disparities.
There is some similarity between our model behavior and
the experimental data within this range. However, our
model shows a linearity for disparities at least up to
3.5 deg at the stimulation frequency of 0.5 Hz. Rashbass
and Westheimer interpreted their results as a saturation
beyond 1 deg of disparity. They did not however specify
their stimulus frequency. The simulated gain and phase
responses are shown in Fig. 11(c) and (d). In each plot,
the crosses (circles) represent the response of the model

FIGURE 13. Firing patterns of model cells. (a) Typical stimulus
paradigm. (b) Vergence response to the paradigm in (a). (c) Typical
firing pattern in the disparity coder map under conditions of darkness,
0 deg vergence and 2 deg convergence conditions. The numbers in the
panel indicate the disparity coder position in the map of coders.
(d) Typical firing pattern in the position, velocity and turn-off circuitry
cells under previously mentioned conditions and convention. ADN is
the activity detector cell and SWNs are switch cells in the active turn-

off circuit.
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without (with) the VODC. The velocity overdrive has a
very small effect on the gain response but has a
significant phase reducing (<90 deg) effect at lower
frequencies. These results are in qualitative agreement
with the experimental data (not shown) reported by
Rashbass and Westheimer (1961a).

Firing patterns of model cells

A comparison between firing patterns of model cells
with actual vergence velocity and position cells recorded
from monkeys (Mays, 1984; Mayset al., 1986) is shown
in Fig. 12. Notice that the vergence step responses in
monkeys [Fig. 12(a–d)] are significantly slower than
similar responses in humans [Fig. 12(e–h)]. The position
cells in monkeys fire at least 10–30 msec before the eyes
move indicating a small delay during motoneuron
recruitment or plant movement. In our simulations, the
entire motoneuron and plant are approximated by a first-
order system, hence such a delay is not seen in the model
cell patterns. The neural responses shown in Fig. 12(a–d)
exhibit symmetric convergence–divergence behavior.
Therefore, for comparison purposes, we used symmetric
parameters. The neural firing patterns closely resemble
simulated firing patterns for both position and velocity
cells.

Figure 13 shows firing patterns of various model cells
during dark and step stimuli conditions. The patterns for
retinotopic maps and disparity detectors are not shown
due to the large number of neurons involved in these
pools. The stimulation paradigm and the corresponding

vergence response are shown in Fig. 13(a and b),
respectively. Figure 13(c), shows the firing pattern of
the disparity coders betweenÿ2 and 2 deg. The pattern of
activity in the network of disparity coders show a
traveling wave from large disparities toward zero
disparity. In Fig. 13(d), we show the firing patterns of
position and velocity cells, and the cells in the active
turn-off circuitry.

Other characteristics

Since we do not model accommodation–vergence
interactions, it is appropriate to currently leave out

FIGURE 14. Simulated vergence responses with zero velocity input to
the motoneurons/plant. (a) Closed-loop 2-deg step response for subject
LFH. The step duration was 5 sec. (b) Open-loop step response to a
disparity step of 0.4 deg. (c) Simulated closed-loop responses to
convergent ramps from 0.7 to 36 deg/sec are shown in the left panel.
The peak amplitude was 4 deg. The computed velocity traces for the
responses in the left panel are shown in the right panel. (d) Closed-loop

sinusoidal responses to a 2 deg p–p stimulus at 0.05 and 0.1 Hz.

FIGURE 15. Effect of parametric variations on simulated vergence
responses. The parameters specified here are described in Appendix B.
(a) Closed-loop 2-deg step response under various synaptic gains at the
position cells. The synaptic weights between the velocity and position
cells were set as follows:

wV*; P* � wV+; P+ � Wp

and

wV*; P+ � WV+; P* � ÿwp:

Correspondingly, the position gain between the position cells and the
motoneurons/plant was set as follows:

KL
P* � KL

P+ � KR
P* � KR

P+ � 0:04=Wp:

The velocity gain at the motoneurons/plant was set as follows:

KL
V* � KL

V+ � KR
V* � KR

V+ � 0:001=Wp:

(b) Closed-loop staircase responses with the same parameters that were
used for the step responses in (a). Each step was 2 deg. (c) Closed-loop
2-deg step responses under various velocity gains at the motoneurons/
plant system. The velocity gain at the motoneurons/plant was set as
follows:

KL
V* � KL

V+ � KR
V* � KR

V+ � Kv:

The position gain between position cells and both the plants was
constant and set to 2. (d) Dark vergence decay under various synaptic
gains between the turn-off switches and the corresponding position
cells. The synaptic weights were set as follows:

wS+; P* � WS*; P+ � Ws

and

wS*; P* � wS+; P+ � ÿWs:
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open-loop vergence conditions caused by monocular
viewing. After a vergence effort, the actual position of the
blocked eye is believed to be determined mainly by the
accommodative posture of the viewing eye. Recent open-
loop step response data have indicated a ramp-step like
behavior (Semmlowet al., 1994). It should be noted that
data from other researchers (Pobuda & Erkelens, 1993)
do not show this behavior. There is evidence of the open-
loop step response reaching a steady state before reaching
the physiological limits (Pobuda & Erkelens, 1993). Our
model currently cannot explain these data. The motor
threshold observed in vergence movements (Riggs &
Niehl, 1960; Duwaer & van Den Brink, 1981) can be
implemented by increasing the threshold of the detectors
in the NRM or in the map of disparity coders. Due to the
low resolution of the NRM in our simulations, we have
ignored the motor threshold for reasons of simplicity.

DISCUSSION AND CONCLUSION

Analysis of the model

To understand the effects of velocity drive to the plant
Fig. 14 shows the simulated responses obtained by
blocking the velocity input to the plant. The blocking
includes the constant as well as the overdrive component
of the vergence velocity while keeping all other
parameters (LFH) the same. The step response in Fig.
14(a) does not show the pronounced oscillations near the
steady-state amplitude of the response. This supports our
earlier claim that these oscillations occur as a result of the
velocity (fixed and variable) input to the plant. Further-
more, as seen in Fig. 14(b), the open-loop integral
characteristics do not show a significant difference when
compared to the response in Fig. 10(a). As seen in Fig.
14(c), the ramp-step like behavior observed at medium
ramp velocities (1.4–5.6 deg/sec) is also eliminated when
the velocity drive to the plant is removed. Finally, as
shown in Fig. 14(d), the micro-oscillations at lower
sinusoidal frequencies are also eliminated when the
velocity drive, in particular the variable drive, is blocked.
All this evidence put together suggests a strong
possibility of a velocity drive to the plant. Furthermore,
such a drive must be variable in nature.

Further analysis of the model reveals the significance
of certain model parameters in controlling the linearity,
the dark decay and the oscillatory characteristics of the
vergence system. Figure 15(a) shows that similar step
responses are obtained by keeping the product of synaptic
gain at the position cells and the position gain at the
motoneurons/plant system constant. Also kept constant is
the ratio of the position gain to the velocity gain at the
motoneurons/plant system. However, under the same
conditions as above, Fig. 15(b) clearly indicates the
increase in motor nonlinearity with increase in synaptic
gain at the position cell. These simulations suggest that a
smaller membrane potential operating range of the
position cells followed by a larger linear amplification
would result in linearity over a larger vergence range.

For the response shown in Fig. 15(c), all the model

parameters are held constant while the velocity gain at
the motoneurons/plant system is varied. As the velocity
gain is increased, oscillations near the completion phase
of the responses also increase. These responses provide
further evidence of the role of the velocity signal in
generating these oscillations. It should, however, be
noted that the delay in the system also plays a role in
generation of these oscillations, particularly when the
velocity gain is high.

The dark vergence decay characteristics are controlled
by the synaptic weights between the position cells and the
corresponding turn-off switch cells. Since a push–pull
negative feedback loop is formed when the switch cells
are activated, the decay rate would be directly related to
the synaptic weight described above. Figure 15(d) shows
that the decay rate is larger for a larger synaptic weight
while keeping all other parameters constant.

Model predictions

Dark vergence dynamics and the active turn-off
circuit. In our model, the position integrators are
nonleaky. Hence, the decay characteristics in the absence
of target are independently determined by an active turn-
off circuit. The model thus predicts the presence of such a
circuit for the human vergence system. One may expect
to find cells closer to the mid-brain that exhibit a behavior
similar to the switch cells (SWN) in the active turn-off
circuit of the model. There should be cells that indicate
the presence or absence of a binocular target and they
could be closer to the areas that perform sensory-motor
transformations. Schor’s (1992) and Krishnan’s and
Stark’s models (1977) predict an exponential decay
under conditions of darkness. The dark vergence decay
dynamics obtained from our model are indistinguishable
from the corresponding exponentials. Observation of
dark vergence dynamics thus cannot uncover the under-
lying mechanism of decay. The model, however, predicts
that such a mechanism is necessary if the position
integrators are nonleaky, and if the integrators are
nonleaky, then the vergence output would not reach a
steady-state prior to reaching a fixed physiological
(maybe plant) limit when the input disparity is held
constant. In other words, outside the motor threshold
range, the vergence steady-state level is independent of
the magnitude of the clamped disparity. Thus an open-
loop experiment where disparity is held constant at two
small amplitudes (0.25 and 0.5 deg) can indirectly
provide evidence for an active turn-off mechanism. If
the vergence system is nonleaky, then the responses to
both the disparity steps would reach the same steady-state
level.

Motor nonlinearity. The motor linearity aspect of the
vergence system can be uncovered by a staircase
stimulation paradigm. In an equi-step paradigm, the
sensory inputs in general come from the same spatial
locations on the retina. The initial motor position is,
however, different for each subsequent step. Perfect
motor linearity is exhibited if the dynamical response of
all steps is identical. As an example, a paradigm where a
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12 deg vergence staircase is formed by six steps of 2 deg
each, presented for a maximum duration of 5 sec. The
peak velocity of each 2 deg step response can be used to
compare the dynamics of each step. In the case of perfect
linearity as indicated by most current models (Schor,
1992; Krishnan & Stark, 1977; Pobuda & Erkelens,
1993), the peak velocity will be equal for all steps.
However, our model predicts that the peak velocity of
convergence (divergence) steps could decrease (increase)
as the initial motor position becomes more converged.
The word “could” is used because the change in peak
velocity of convergence or divergence depends on the
membrane potential operating point and the operating
range of position cells. This is a direct consequence of the
nonlinear position integrators and the push–pull integra-
tion scheme used in our model. However, for a small
range (4–6 deg) of vergence positions, the peak velocity
could remain constant; i.e. a linear range of operation for
the position cells. The linear range may vary from
individual to individual and is related to the input
synaptic gain and the firing function gain that enclose the
membrane potential nonlinearity, in other words, the
operating point of the position integrators. The model
also predicts that the step response completion time
(analogous to the time-constant) could also increase with
increased convergence. This is also as a result of the
nonlinear behavior of the position cells.

Steady-state vergence errors. Previous models have
associated vergence errors with leakiness in the open-
loop vergence system (Schor, 1979, 1980). Since our
model uses disparity as a spatio-temporal quantity, under
steady-state it remains a spatial quantity. Further, due to
the use of nonleaky position integrators, the vergence
errors in our model are disociated from open-loop
leakiness. Analogous to the point spread function of an
optical system, there exists a disparity spread function
which may be defined as the output of the sensory system
when stimulated binocularly by a point target. Hence the
equilibrium in the vergence system is achieved by
actively balancing the convergence and divergence
activities generated by various disparity spread functions.
This concept of equilibrium leads to a novel hypothesis
about the origin of steady-state vergence errors. Our
model predicts that the steady-state vergence error arises
as a result of asymmetry between the convergence and
divergence sub-systems. The open-loop gain of the
vergence system is very small compared to those used
in linear models (Hung & Semmlow, 1980) to explain the
small steady-state vergence error (Rashbass & West-
heimer, 1961a). Our explanation of the vergence error
does not require a large open-loop gain in the vergence
system. The staircase paradigm can be used to obtain the
correlation between the steady-state errors and the peak
velocity during convergence and divergence at each
vergence posture.

Relation to other models

Our model shares several properties with neural
network models proposed for other types of eye move-

ments, namely pursuit (Eckmiller, 1981) and saccades
(Grossberg & Kuperstein, 1989). While these models use
similar building blocks, they differ in their architectures
due to the different properties they synthesize. Since our
model is designed to generatedisjunctive eye move-
ments, both our input stage and the final mapping to
motoneurons are different. Our input stage consists of a
specialized architecture that computes disparity. Various
models for disparity computations have been proposed
for depth perception (Dev, 1975; Marr & Poggio, 1976)
but their role in eye-movements was not clearly
indicated. While these models compute steady-state
disparity, in our model we compute instantaneous
disparity to generate delayed continuous feedback. While
the saccadic models use a local feedback (nonvisual) type
of control, our model is designed to use continuous visual
feedback. Our model also differs in the specialized
circuits contributing to motor control (e.g. velocity
overdrive and discharge circuits).

Summary

Our model uses an adaptive nonlinear mixed (position
and velocity) control mode to explain the open- and
closed-loop responses of the HVS. It suggests possible
neural correlates for the HVS, some of which are
supported by existing data. A coarse disparity computa-
tion mechanism is sufficient to generate vergence move-
ments. It is possible to explain the large delay (160 msec)
seen in vergence responses by a combination of finite
rise-time of membrane potential of pre-synaptic neurons
and firing threshold of post-synaptic cells at various
processing stages. The asymmetry in sensorimotor
transformations can account for the asymmetric conver-
gence and divergence dynamics. Due to nonleaky
position integrators, our model does not exhibit the
open-loop steady-state effect. On the other hand,
regardless of the magnitude of the clamped disparity,
our model predicts that the vergence system will continue
to operate until its physiological limits. We have shown
that the network model of the HVS proposed here is
capable of explaining a wide range of short-term
dynamical data under both closed- and open-loop
conditions. The model also makes several novel and
important predictions. It predicts that the vergence
system would exhibit motor nonlinearity. It also predicts
that the vergence errors are a result of asymmetry
between the divergence and convergence sub-systems.
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APPENDIX A: MATHEMATICAL DESCRIPTION OF
THE MODEL

The model uses additive and multiplicative (shunting) types of
equations. For a general review of these equations and their
relationship to biological neurons the reader is referred to Grossberg
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(1988) (in particular Sections 6, 9, and 13–15). The velocity gate
control cells make use of variable reaction-time property of shunting
equations (rev. O¨ ğmen, in press).

In the following equations the symbolx represents the “membrane
potential” of the cells. The output of the cell is related nonlinearly to
the membrane potential. This nonlinearity is denoted byf(). A simple
linear-above-threshold function with saturation was used in all
simulations:

f �x� �
0 if x< ÿ

�x if ÿ � x < 


�
 if 
 � x;

8
<

:
�A1�

whereΓ, Ω, anda are constants determining the threshold, saturation,
and gain of the firing function, respectively. The variables and
parameters related to the left-eye (right-eye) are denoted by the
superscriptL (R). The variables and parameters for the convergence
(divergence) circuits are denoted by the subscript* (+). For simplicity,
wherever possible only the equations, for the left eye and the
convergence circuits are given. Those for the right eye and the
divergence circuits are obtained by interchanging L and R,* and+,
respectively.

Normalized retinotopic map (NRM). Since the model does not
address the stage of target selection, localization, and normalization,
our description starts with the activities of neurons in the NRM. Let us
denote the activity (membrane potential) of a neuron in this map by
xL

NRM;i where the subscripti denotes the retinotopic position of the cell.
The retinotopic positionsi range from ÿN to N; with i � 0
corresponding to foveal position. The dynamics of the cells in the
NRM are described by the additive equation

Ks
dxL

NRM; i

dt
� ÿAL

NRM; i x
L
NRM; i � I L

i ; �A2�

with i =ÿN, ÿN + 1,…, ÿ1, 0, 1,…, Nÿ1, N. The first term on the
right-hand side of the equation is a passive decay term. In this and the
following equations the symbolA is used to denote a (positive) decay
constant andKs is a global scaling factor. The second term is the input
to the neuron from the target selection, localization, and normalization
stage. This input is set to:

I L
i � Ki��i ÿ iL�; �A3�

whered(.) is the Kronecker delta function,iL is the retinal position of
the target in the left eye andKi is the amplitude of the input. Note that
the d(.) function is a simplification and in general we posit a
distribution whose extent depends on the size of the target. This
implies that the unsaturated peak vergence velocity will be higher for
larger targets since a larger number of disparity coders would be
activated. Most natural targets are larger compared to the laboratory
targets and experiments with natural targets support this prediction
(Erkelenset al., 1989b).

Map of disparity detectors (MDD). Disparity detectors are organized
into a two-dimensional map as shown in Fig. 2. The horizontal axis of
this map corresponds to different values of disparity. Let us denote this
dimension by indexd. More than one combination of inputs from the
left and right NRMs can correspond to the same disparity. For each
disparity value, neurons representing these different combinations are
positioned along the vertical axis. Let indexl denote this dimension.
The dynamics of a disparity detector neuron positioned at (d, l) (i.e.
combinationl for disparity d) in the array is given by the additive
equation

Ks
dxDD; d; l

dt
� ÿADD; d; l xDD; d; l � f L

NRM xL
NRM; l

� �
� FR

NRM xR
NRM; dÿ l

� �
;

�A4�

with ÿ2N� d� 2N and max(ÿN, dÿN)� l �min(N, d + N). The
inequality for d sets the limits for maximum and minimum possible
disparity values. The inequality forl sets the range for different
combinations that can yield a particular disparity value and generates
the “diamond” shape of the disparity detector map. The synaptic
weight for all synapses between the two NRMs and the disparity
detectors is unity.

Map of disparity coders (MDC). The two-dimensional array of
disparity detection is converted to a one-dimensional array of disparity
by making those disparity detector neurons that are tuned to the same
disparity converge to a single neuron. Such a convergence can be
described by

Ks
dxDC; d

dt
� ÿADC; dxDC; d �

Xmin�N; d�N�

l�max�ÿN; dÿN�

fDD�xDD; d; l�; �A5�

with ÿ2N� d� 2N. The limits of l set the range for different
combinations in “diamond” topology that can yield a particular
disparityd.

Velocity cells. For simplicity, we have used just two vergence
velocity cells, one convergent and one divergent. As shown in Fig. 3,
positive and negative disparities project respectively to convergence
and divergence velocity cells. The dynamics of convergence and
divergence velocity cells are described by the additive equations

Ks
dxV*

dt
� ÿAV*xV* �

X2N

d�0

wd; V*fDC�xDC; d� �A6�

and

Ks
dxV+

dt
� ÿAV+xV+ �

X0

d�ÿ2N

wd; V+fDC�xDC; d�; �A7�

wherewd; V* andwd; V+ are the weights whose strength is proportional
to the position of the presynaptic neuron in the disparity map, i.e.
proportional tod.

Position cells. The position signal is obtained by integrating the
activity of the velocity cells. However, since the activity of velocity
cells is always non-negative, an opponent input is required to discharge
the integrator when the vergence demand changes from convergence to
divergence or vice versa. This is achieved by push–pull integration
dynamics described by:

Ks
dxP*

dt
� �BP* ÿ xP*�wV*; P*fV*�xV*� ÿ �DP* � xP*�wV+; P*fV+�xV+�;

�A8�

wherewV*; P* andwV+;p* are the weights between the convergence and
divergence velocity cells and the convergence position cell, respec-
tively. Note the absence of a passive decay term in this equation. This
means that the integrator does not decay when the inputs are zero.

Velocity overdrive circuit

Velocity predictor cells (VP). These cells are tuned to provide a
close estimate of the actual vergence velocity signal that will be
generated a reaction time (ca 160 msec) later. The dynamics of the
convergence velocity predictor cell is given by:

Ks
dxVP*

dt
� ÿAVP*xVP*

�

XN

i�ÿN

wL
i; VP*f L

NRM xL
NRM; i

� �
� wR

i; VP*f R
NRM xR

NRM; i

� �� �
: �A9�

As illustrated in Fig. 4(b), the weightswL
i; VP* and wR

i; VP* are
proportional to retinal eccentricity and,wL

i; VP+ � ÿwL
i; VP* and

wR
i; VP+ � ÿwR

i; VP*. Note that in the above equations, the superscripts
L and R indicate the corresponding retinotopic map.

Velocity trigger cells (VT). These additive cells act as velocity level
detectors in the VOCC, and are identical in every respect except their
firing thresholds. The equation describing their dynamics is as below
(assume for divergence):

Ks
dxVT;i

dt
� ÿAVT; i xVT; i � fVP*�xVP*� � fVP+�xVP+�; �A10�

with i � 1, 2, 3.
Velocity gate control cells (VG). These shunting cells provide a very

critical feature of rapid turn-on and a slow turn-off that are needed to
hold the VOGs off for a suitable period of time once they are
inactivated by a sudden change in position. This property helps
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eliminate any possibility of oscillations during step movements. The
dynamics of these cells are described by:

Ks
dxVG; i

dt
� ÿAVGxVG ;i � BVG ÿ xVG; i

ÿ �
fVT; i�xVT; i�; �A11�

with i � 1, 2, 3.
Velocity overdrive gate cells. These additive cells behave as

switches that are turned off if the corresponding VGs are active. The
dynamics of the VOG convergence cells are described by:

Ks
dxVOG*; i

dt
� ÿAVOGxVOG*; i � fV*�xV*� ÿ fVG�xVG; i�; �A12�

with i � 1, 2, 3.
Velocity summer cells (VS). This additive cell adds the inputs from

all the overdrive channels and the direct velocity channel, thus

providing a variable velocity signal to the motoneuron/plant system
based on the smoothness of the vergence stimulus. The dynamics of the
VS convergence cell is described by:

Ks
dxVS*

dt
� ÿAVS*xVS* � wV*; VS*fV*�xV*�

�

X3

i�1

wVOG*;i;VS* fVOG�xVOG*; i� �A13�

Active turn-off circuit

In order to understand the function of this circuit let us analyze the
behavior of the model when no target is selected, i.e. when
I L
i � I R

i � 0 for all i. An inspection of Eqs (A2), (A4), (A5), (A6)
and (A7) shows that all activities in the NRM, map of disparity

TABLE 2. Synaptic weights

Cell type Subject Weight variable Weights

V* LFH d, V* (0, 0), (1, 0.075), (2, 0.075), (3, 0.15), (4, 0.25), (5, 0.4), (6, 0.6), (7, 0.8), (8, 1)
V* NYN d, V* (0, 0), (1, 0.025), (2, 0.15), (3, 0.25), (4, 0.5), (5, 1.4), (6, 2), (7, 2.8), (8, 3.6)
V* VTA d, V* (0, 0), (1, 0.07), (2, 0.1), (3, 0.3), (4, 0.8), (5, 1.4), (6, 2), (7, 2.8), (8, 3.6)
V+ LFH d, V+ (0, 0), (ÿ1, 0.075), (ÿ2, 0.12), (ÿ3, 0.45), (ÿ4, 0.7), (ÿ5, 1.4), (ÿ6, 2), (ÿ7, 2.8), (ÿ8, 3.6)
V+ NYN d, V+ (0, 0), (ÿ1, 0.025), (ÿ2, 0.15), (ÿ3, 0.4), (ÿ4, 0.8), (ÿ5, 1.4), (ÿ6, 2), (ÿ7, 2.8 ), (ÿ8, 3.6)
V+ VTA d, V+ (0, 0), (ÿ1, 0.07), (ÿ2, 0.1), (ÿ3, 0.3), (ÿ4, 0.8), (ÿ5, 1.4), (ÿ6, 2), (ÿ7, 2.8), (ÿ8, 3.6)
P* *ÿVTA V*, P* 0.02
P* VTA V*, P* 0.015
P* *ÿVTA V+, P* ÿ0.02
P* VTA V+, P* ÿ0.015
P* * S+, P+ 0.1
P* * S*, P* ÿ0.1
P+ *ÿVTA V*, P+ ÿ0.02
P+ VTA V*, P+ ÿ0.01
P+ *ÿVTA V+, P* 0.02
P+ VTA V+, P+ 0.015
P+ * S+, P+ ÿ0.1
P+ * S*, P+ 0.1
VP* * iL, VP* (4, 0.3), (3, 0.225), (2, 0.15), (1, 0.075), (0, 0), (ÿ1,ÿ0.75), (ÿ2,ÿ0.15), (ÿ3,ÿ0.225), (ÿ4,ÿ0.3)
VP* * iR, VP* (4, 0.3), (3, 0.225), (2, 0.15), (1, 0.075), (0, 0), (ÿ1,ÿ0.075), (ÿ2,ÿ0.15), (ÿ3,ÿ0.225), (ÿ4,ÿ0.3)
VS* * V*, VS* 1.5
VS* * VOG*, i, VS* (1, 1.5), (2, 1.5), (3, 1.5)
VS+ * V+, VS+ 0
VS+ * VOG+, i, VS+ (1, 1.5), (2, 1.5), (3, 3)
S* * AD, S* 10
S+ * AD, S+ 10

TABLE B1. Cell characteristics

Cell type A Γ a Ω B D R K

NRM 1 0 0.1 10 N/A N/A N/A 10
MDD 1 1 1 1 N/A N/A N/A N/A
MDC 1 0 1 1 N/A N/A N/A N/A
V* 1 0 1 1 N/A N/A N/A N/A
V+ 1 0 1 1 N/A N/A N/A N/A
P* 0 ÿ0.475 1 1 0.5 0.5 N/A N/A
P+ 0 ÿ0.5 1 1 0.5 0.5 N/A N/A
VP 1 0 1 1 N/A N/A N/A N/A
VT,1 1 0.003 1 1 N/A N/A N/A N/A
VT,2 1 0.01 1 1 N/A N/A N/A N/A
VT,3 1 0.03 1 1 N/A N/A N/A N/A
VG 0.1 0.005 1 1 1 N/A N/A N/A
VOG 1 0 1 1 N/A N/A N/A N/A
VS 1 0 1 5 N/A N/A N/A N/A
AD 0.5 0.1 1 1 1 N/A ÿ0.2 N/A
AS* 1 0.475 1 1 N/A N/A N/A N/A
AS+ 1 0.5 1 1 N/A N/A N/A N/A

TABLE 3. Plant characteristics

Subject t KP* KP+ KV* KV+

LFH 25 2 2 0.2 0.2
NYN 25 2 2 0.06 0.06
VTA 25 2.2 2.2 0.05 0.05

1398 S. S. PATELet al.



detectors, map of disparity coders, as well as the activities of velocity
cells will decay to 0. SubstitutingfV*�xV*� � fV+�xV+� � 0 in
Eq. (A8) shows thatdxP*

dt � 0, correspondinglydxP+

dt � 0. Therefore,
since the derivative of position does not change, the eyes will stay
where they are. In order to return the eyes to their resting position, we
introduce an active circuit that detects the absence of a binocular
target. A simple way of doing this is to summate all the activities in the
disparity coders:

Ks
dxAD

dt
� ÿAAD xL

AD ÿ RAD
ÿ �

��BAD ÿ xAD�
X2N

i�ÿ2N

wDC;i;ADfDC�xDC;i�; �A14�

wherexAD, RAD is the activity of the “activity detector” neuron (ADN)
and its resting level, respectively. All the synapses between the
disparity coders and ADN have unity strength. In order to dictate the
resting positions of the eyes we introduce a “switch” neuron (SWN)
that moves the eyes when there is no selected target and the eyes are in
a position different from their resting positions. The dynamics of
switch cells are described by:

Ks
dxS*

dt
� ÿAS*xS* � wP*; S*fP*�xP*� ÿ wAD; S*fAD�xAD�; �A15�

wherexS* is the activity of the convergence switch cell.wP*; S* is the
synaptic weight between convergence position cell and the conver-
gence SWN.wAD; S* is the weight between the ADN and the
convergence SWN. Since the switch cells control the position of the
eyes, Eq. (A8) is modified as follows:

Ks
dxP*

dt
� BP* ÿ xP*
ÿ �

wV*; P*fV*�xV*� � wS+; P*fS+�xS+�
� �

ÿ DP* � xP*
ÿ �

wV+; P*fV+�xV+� � wS*; P*fS*�xS*�
� �

: �A16�

Motoneurons and the plant

The entire system of motoneurons and the eye plant is implemented

as a first order system (Robinson, 1981; Krishnan & Stark, 1983;
Gamlin & Mays, 1992). The differential equation for this system is:

Kp
d�L

dt
� ÿ

1
�

L
�

L
� KL

P*fP*�xP*� ÿ KL
P+fP+�xP+� � KL

V*fVS*�xVS*�

�KL
V+fVS+�xVS+�; �A17�

where�
L
; � ; KP*; KP+; KV*; andKV+ are respectively the position of

the left eye in degrees, the time constant, convergence and divergence
position and velocity gains, respectively, of the system.Kp is a global
scaling constant.

APPENDIX B: SIMULATION METHODS

The model consists of the system of differential equations described
by Eqs (A1)–(A17). For simulations, the system was solved
numerically using the fixed-step (5 msec) Runge–Kutta 3–4 formula.
The global scaling factorsKs andKp were 0.05 and 0.005, respectively.
The parameters that are different for NYN and VTA compared to LFH
are tagged with their names. The parameters that are untagged are for
all the subjects. The simulation software was written in ANSI C and all
the simulations were performed on a Macintosh II computer equipped
with a Daystar 50 MHz 68030 accelerator. The parameters used for the
simulations are listed in Table B1. Parameters without reference to a
subject (*) are applicable to all subjects. In some cases the phrase
“*xxx” is used to mean all subjects except xxx. Wherever applicable,
the unspecified parameters of the right eye are the same as those of the
left eye. Details of simulation procedures are given in Patelet al.,
(1996) and a copy of the simulation software can be obtained from the
authors.
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