
www.elsevier.com/locate/visres

Vision Research 47 (2007) 2170–2178
Mechanisms of perceptual learning of depth discrimination
in random dot stereograms

Liat Gantz a, Saumil S. Patel b, Susana T.L. Chung a, Ronald S. Harwerth a,*

a College of Optometry, University of Houston, 505 J. Davis Armistead Building, Houston, TX 77204-2020, USA
b Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX 77030, USA

Received 9 August 2006; received in revised form 17 April 2007
Abstract

Perceptual learning is a training induced improvement in performance. Mechanisms underlying the perceptual learning of depth dis-
crimination in dynamic random dot stereograms were examined by assessing stereothresholds as a function of decorrelation. The inflec-
tion point of the decorrelation function was defined as the level of decorrelation corresponding to 1.4 times the threshold when
decorrelation is 0%. In general, stereothresholds increased with increasing decorrelation. Following training, stereothresholds and stan-
dard errors of measurement decreased systematically for all tested decorrelation values. Post training decorrelation functions were
reduced by a multiplicative constant (approximately 5), exhibiting changes in stereothresholds without changes in the inflection points.
Disparity energy model simulations indicate that a post-training reduction in neuronal noise can sufficiently account for the perceptual
learning effects. In two subjects, learning effects were retained over a period of six months, which may have application for training stereo
deficient subjects.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Perceptual learning is an improvement in performance
as a result of training (with feedback) or practice (without
feedback) (Chung, Legge, & Cheung, 2004; Fahle, 2005;
Lu, Chu, Dosher, & Lee, 2005). Unlike sensitivity changes
resulting from repetitive stimulation, such as desensitiza-
tion or habituation, perceptual learning tends to persist
over months, and in some cases, years (Fahle, 2005).

Perceptual learning has been shown to improve perfor-
mance of visual tasks, including: Vernier acuity (Fahle,
1997; Herzog & Fahle, 1997; Saarinen & Levi, 1995; West-
heimer, 2001), curvature acuity (Fahle, 1997), resolution
acuity (Westheimer, 2001), bisection acuity (Westheimer,
2001), orientation discrimination (Dosher & Lu, 1999;
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Karni & Sagi, 1993; Polat, Ma-Naim, Belkin, & Sagi,
2004; Westheimer, 2001), reading speed (Chung et al.,
2004), letter recognition (Chung et al., 2004), motion dis-
crimination (Liu & Weinshall, 2000), contrast discrimina-
tion (Kuai, Zhang, Klein, Levi, & Yu, 2005), motion-
direction discrimination (Kuai et al., 2005; Lu et al.,
2005), waveform discrimination (Fiorentini & Berardi,
1980), feature detection (Ahissar & Hochstein, 1997), spa-
tial phase discrimination (Berardi & Fiorentini, 1987),
position discrimination (Li, Levi, & Klein, 2004; Li,
Young, Hoenig & Levi, 2005) depth perception in random
dot stereograms (Fendick & Westheimer, 1983; Kumar &
Glaser, 1993; O’Toole & Kersten, 1992; Ramachandran,
1976; Ramachandran & Braddick, 1973; Skrandies & Jedy-
nak, 1999; Sowden, Davies, Rose, & Kayne, 1996), and fig-
ure perception in random dot stereograms (O’Toole &
Kersten, 1992).

Random dot stereograms (RDS), popularized as a
research tool by Julesz in 1960 (Howard & Rogers,
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2002), are a type of stimulus that has been used for human
and primate stereopsis experiments (e.g. DeAngelis, 2000;
Harwerth & Boltz, 1979; Julesz, 1960; Ohzawa, 1998;
Schor, 1991; Walraven, 1975), with properties that are well
suited for studies of perceptual learning (e.g. O’Toole &
Kersten, 1992; Schmitt, Kromeier, Back, & Kommerell,
2002; Watanabe, Nanez, & Sasaki, 2001). The perception
of depth in RDS arises by binocular combination of the
monocular half views (O’Toole & Kersten, 1992). It has
been suggested that learning plays an important role in
the perception of depth in RDS because the time to per-
ceive depth in RDS reduces with repeated observation
(Fendick & Westheimer, 1983; O’Toole & Kersten, 1992;
Ramachandran & Braddick, 1973; Saye & Frisby, 1975;
Skrandies & Jedynak, 1999; Sowden et al., 1996). While
many studies have addressed the perceptual learning of
RDS in terms of features that are learned and/or trans-
ferred, to our knowledge, none have addressed the mecha-
nisms that underlie the perceptual learning of RDS. This
study was undertaken to investigate the mechanisms under-
lying the perceptual learning of depth discrimination in
RDS.

Perceptual learning of RDS has been shown to be spe-
cific to retinal location (O’Toole & Kersten, 1992; Sowden
et al., 1996). Since perceptual learning that is specific to ret-
inal location and stimulus type is suggested to stem from
plasticity changes in the neurons underlying the response
(Dosher & Lu, 1999; Karni & Sagi, 1993), it is possible that
learning of RDS depth discrimination is also spatially
localized and stimulus dependent.

Changes in depth discrimination performance could
occur as a result of changes in various internal noise
sources including random neural firing rates, correspon-
dence noise caused by imprecise combination of neural sig-
nals, signal transmission noise and noise in decision
making processes. Alternatively, changes in depth discrim-
ination performance may occur due to changes in the
strength of the internal encoded relative disparity signal.
This possibility is particularly relevant in cases where the
binocular stimulus contains a disparity signal along with
external noise. Lastly, the changes as a result of perceptual
learning may alter the noise as well as the relative disparity
signal in the disparity processing system. In this paper, we
have used the disparity energy model (Ohzawa, 1998; Patel
et al., 2003, Patel, Bedell, & Sampat, 2006; Qian & Zhu,
1997) to understand the neural substrate of the perceptual
learning in RDS depth discrimination. Specifically, we
sought to establish conditions within the model that are
sufficient to explain the empirical data presented in this
paper.

Interocular correlation in RDS describes the degree in
which the elements of each monocular half view match
each other (Cormack, Stevenson, & Schor, 1991). One hun-
dred percent interocular correlation indicates that every
element in one half-view is paired with a matched element
in a corresponding location of the other half-view. When
the half-views are generated to produce many unmatched
elements, the interocular correlation is low. The unmatched
elements of the RDS weaken the stimulus signal by reduc-
ing the number of elements in the stereoscopic depth plane,
by adding noise to the disparity response mechanism, and
by masking the disparity defined depth with ambiguous
depth stimuli. Therefore, interocular correlation provides
an ideal measure of signal strength for the sensory fusion
of the two half views (Cormack et al., 1991).

This study measured the depth discrimination of RDS
as a function of decorrelation strength before and after
training. In the stimulus used for this study, correlation is
defined as the proportion of elements of RDS that were
forced to match in the two half views. The remaining
unforced elements were paired randomly to be either
matched (e.g. whiteLE M whiteRE), anti-matched (e.g.
whiteLE M blackRE) or unmatched (e.g. whiteLE M

grayRE). Similarly, decorrelation is defined as the propor-
tion of unforced elements of RDS which are randomly
paired. Pre- and post- training functions were compared
to determine the magnitude of perceptual learning. Quanti-
tative analyses were performed on the pre- and post- train-
ing functions to understand the mechanism underlying
perceptual learning of RDS depth discrimination. In addi-
tion, the disparity energy model (Ohzawa, 1998; Patel
et al., 2003, 2006; Qian & Zhu, 1997) was simulated to
determine the neural mechanisms which would be sufficient
to qualitatively explain the empirical data. On two subjects,
post training tests were run after a period of six months to
determine the long term retention of perceptual learning of
RDS depth discrimination. Our results show a substantial
reduction in stereothresholds as a result of the training.
In most cases, the post training stereothresholds were a
constant factor lower than pre- training strereothesholds
for all decorrelation levels. The disparity energy model
indicates that a reduction in firing rate noise in all the neu-
rons in the model is sufficient to account for the empirical
results.

2. Methods

2.1. Subjects

Seven healthy subjects, 20–36 years of age, inexperienced with RDS
stimuli, were recruited. All subjects had at least 40 arcsec stereopsis as
measured with a Titmus stereo test (Titmus Optical Company Inc., Peters-
burg, VA) in two directions (crossed and uncrossed). The research adhered
to the tenets of the Declaration of Helsinki, and the experimental protocol
was reviewed and approved by the University of Houston’s Committee for
the Protection of Human Subjects. Informed consent was obtained from
the subjects and they received remuneration for their participation.

2.2. Apparatus and visual stimuli

The visual stimuli, generated using a VSG 2/3 graphics board (Cam-
bridge Research Systems; U.K.), consisted of two vertically separated
and horizontally aligned 13 · 5 arcdeg dynamic RDS, with a 0.022 arcdeg
separation. The RDS, consisted of 6.7 arcmin · 6.7 arcmin elements, and
different random-dot patterns, were presented on successive views at
60 Hz. Each element was black, white or gray. In each RDS pattern, half
of the elements were gray and the remaining elements were black and



1 The ANOVA included six (out of seven) subjects. Subject KC was
excluded due to a partial pre-training data set. KC completed the 0–60%
decorrelation conditions, but not the 80% decorrelation condition, due to
time constraints.
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white with equal probability (i.e. 50% dot density). The stimulus was
viewed through a liquid crystal optical shutter system that was synchro-
nized with the monitor frame rate of 120 Hz.

The upper RDS served as a zero disparity reference of 0% decorrela-
tion, while the lower RDS served as the test, of varying disparities. The
task of the subjects was to discriminate whether the bottom half of the
RDS was closer or farther, with respect to the top reference stimulus.

For 0% decorrelation, each element in one half-view was forced to
have a corresponding matched element in the other half-view in every
frame of the dynamic presentation. For 100% decorrelation, all elements
were randomly paired in the two half-views in each frame of the dynamic
stimulus. Horizontal disparities were introduced by displacing a portion of
the elements in one half image with respect to the other (see Harwerth,
Fredenberg, & Smith, 2003 for details).

Each session consisted of 200 trials. An auditory cue indicated the
beginning of each trial, and a subject-mediated button press initiated a
500 ms stimulus presentation. During the response interval (1000 ms) that
followed, subjects could either continue to press the button, to indicate
that the bottom test was ‘‘far’’ relative to the zero disparity top reference,
or release the button to indicate that the bottom test was ‘‘near’’ relative to
the zero disparity top reference. A high frequency tone provided audio
feedback for correct responses. Depending on the performance level, some
subjects had five disparity magnitudes, presented as both ‘‘far’’ and ‘‘near’’
in each block of trials, and some had three. Generally, as subjects
improved, the number of disparity magnitudes in each block of trials
was reduced to three. The disparity range tested on each block of trials
was monitored and adjusted relative to the subject’s individual improve-
ment. The decorrelation varied on pre- or post-training trials, and was
fixed at 0% during the training sessions.

2.3. Design

Subjects completed a pre-training task consisting of five sessions of
varying decorrelations, ranging between 0% and 80%, in 20% steps. The
pre-training task was followed by training sessions of 0% decorrelation,
until there was no further improvement in thresholds. In general, each
training session consisted of five blocks of 200 trials. However, in the last
training session, when thresholds were nearing asymptotic values, fewer
blocks of 200 trials were required. The number of training trials varied
individually, and ranged between 6600 and 11200 trials, with a mean of
9286 trials. Upon completion of the training, subjects completed a post-
training trial, identical to the pre-training trial.

2.4. Data analysis

For each session, a psychometric function (Fig. 1) for depth discrimi-
nation was derived from the percentage of near responses as a function of
disparity. Uncrossed disparities were arbitrarily assigned negative values
for the purpose of constructing psychometric functions. Therefore, ideally,
the psychometric function varied from zero near responses for the largest
uncrossed disparities, to 100% near responses for the largest crossed
disparities. Each set of data was fit with a logistic function (Berksen,
1972; Simpson, 1995) to determine the stereothreshold, taken as the
semi-intraquartile range of the psychometric function (Fahle, 2005;
Harwerth et al., 2003, Harwerth, Smith, Crawford, & von Noorden,
1997; Simpson, 1995).

Pre- and post-training stereothresholds (in arcmin) were plotted as a
function of decorrelation on a log–log axes, and fit with the following
equation:

y ¼ a
1

1� x
þ b

� �z

ð1Þ

where y is the stereothreshold for a given decorrelation, x is the decorre-
lation, z represents the rate of degradation of the stereovision system as a
function of decorrelation, a represents the minimum noise in the stereovi-
sion system, and b represents the tolerance of the stereovision system to
decorrelation. This form of the equation was chosen to satisfy the condi-
tion that the stereotheshold approaches infinity as decorrelation tends to
100%. An inflection point was defined (arbitrarily) as the decorrelation le-
vel which yields a threshold that is

ffiffiffi
2
p

times higher than the threshold for
0% decorrelation.

A repeated measures ANOVA was performed to examine the effects of
training on stereothresholds before and after the training for all decorre-
lations, and to test if the pattern of differences between thresholds for
the pre- and post-training change with decorrelation (i.e. if the curves
maintain the same shape before and after training).

A paired Student’s T-test was performed to compare the pre-training
and post training inflection points. Confidence intervals for the inflection
points were calculated using a custom-written MATLAB (The Math-
Works, Natick, MA) program. The program randomly selected a thresh-
old for each decorrelation condition from the distribution of thresholds
and their respective standard errors. Eq. 1 was fitted to each set of ran-
domly selected thresholds. Only fits with a correlation coefficient greater
than 0.8 were selected. For each fitted data set, the inflection point was cal-
culated from the fitted parameters. This procedure was repeated 1000
times, and the 95% confidence intervals of the 1000 calculated inflection
points were determined.
3. Results

Fig. 2 presents the learning curves of the subjects. All sub-
jects showed a marked improvement (decreased by a factor
of two or more) in stereothresholds with increasing training
trials, and a decrease in the standard error of the stereo-
threshold measure. In other words, subjects demonstrated
a consistent reduction in stereothreshold with practice.

Pre- and post-training functions relating stereothreshold
to decorrelation (called decorrelation functions hereafter)
for all subjects are shown in Fig. 3. It is clear by visual
inspection of the data, that the post- learning curves are
shifted downward with respect to the pre-learning curves,
without a change in the shape of the curves. A two-way
repeated measures ANOVA1 confirmed this observation.
As seen in Fig. 4b, log stereothresholds reduced after train-
ing and the main effect of training was significant
(F(df = 1,5) = 35.92, Huynh–Feldt corrected P = .002).
There was no evidence of interaction between session
(pre- vs. post-) and decorrelation (F(df = 4,20) = 0.24,
Huynh–Feldt corrected P = .87). Post-hoc comparisons
of the logarithms of the pre-training to post-training ste-
reothreshold for each decorrelation, with the alpha level
maintained at 0.05, and Huynh–Feldt corrections, also
demonstrated a significant decrease in the log stereothresh-
old after training (0%: P = .0002, 20%: P = .002, 40%:
P = .002, 60%: P = .0005, 80%: P = .0008).

Due to the fact that the previous repeated measures
ANOVA did not include all seven subjects, another
repeated measures ANOVA was performed on all seven
subjects for all but the 80% decorrelation condition. These
results were similar to the results of the ANOVA that
included six subjects for all decorrelation conditions. These



Fig. 1. Psychometric functions for performance on different sessions for subject MK demonstrate a systematic improvement with training. Slopes of the
psychometric functions become steeper over a lower disparity range. The inset describes the amount of practice trials prior to obtaining the psychometric
function, the threshold and standard error of the threshold measurement in units of arcminutes obtained from the psychometric function.
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results imply that the training at 0% decorrelation trans-
ferred to all decorrelation values.

The inflection point of the curve, the point at which the
stereovision system loses its tolerance to decorrelation, was
determined arbitrarily by calculating the decorrelation
which yielded a factor of

ffiffiffi
2
p

increase in stereothreshold.
The logarithms of the pre- and post-training inflection
points, as shown in Fig. 4b, were not different (Student’s
paired T-test t(df=6) = 0.655; p = .537), suggesting that
there was no evidence of a change in the stereovision sys-
tem’s tolerance to decorrelation as a result of training.

To examine the long term retention of perceptual learn-
ing of RDS depth discrimination, two subjects were
retested using the post training paradigm six months after
the completion of their training. These six month retention
data are marked with inverted triangles in Fig. 3, for sub-
jects KC and MW. Both subjects retained their post train-
ing threshold over a period of six months.
4. Discussion

It has been suggested that perceptual learning plays a
role in the perception of depth in RDS because the time
to perceive depth in RDS reduces with repeated observa-
tion (O’Toole & Kersten, 1992). This study was undertaken
to determine the mechanisms underlying the perceptual
learning of stereoscopic depth discrimination. Our results
demonstrated a large change in the stereothreshold across
decorrelation values, without a significant change in the
stereovision system’s tolerance to decorrelation. In order
to understand the neural mechanism underlying the
observed changes in stereothresholds, we used the disparity
energy model (Ohzawa, 1998; Patel et al., 2003, 2006; Qian
& Zhu, 1997) to generate simulated responses to stimuli
with varying levels of decorrelation.
4.1. Simulations of disparity energy model

The disparity energy model described in Patel et al.
(2006) was utilized here. There were two modifications
made to the model. A noise source not utilized in previ-
ous models (Patel et al., 2006) was added to account for
the tolerance of the stereovision system to low levels of
decorrelation. This noise source was added in the form
of a spatial jitter when simple cell signals are combined
by the complex cells. In other words, a complex cell at
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Fig. 2. Learning curves for all subjects, stereothreshold in units of arcminutes as a function of number of trials. Error bars represent standard errors of the
threshold measurement of the first few training sessions and the last training session. Each data point represents a threshold obtained from 200 trials.
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a spatial location (i, j) receives signals from simple cells at
spatial locations (i ± m1, j ± n1) and (i ± m2, j ± n2),
where m1, m2, n1 and n2 are random numbers. This type
of noise is similar to the temporal jitter proposed to
account for elevation of Vernier thresholds of moving
stimuli (Bedell, Chung, & Patel, 2000). In addition, to
reduce the simulation time, the receptive fields of monoc-
ular cells were one-dimensional horizontal versions of
those used in Patel et al. (2006). Thus the monocular
cells in the model used in this paper are isotropic as
described by Qian and Zhu (1997). The details of simu-
lation are available in the Appendix.

The simulation results are shown in Fig. 5. In each
panel, the model’s response is plotted as a function of dec-
orrelation for different levels of neuronal noise represented
by the noise multiplier a. Panels a, b, c, and d represent the
signal, noise, inverse of signal to noise ratio (1/d 0) and
model fits to experimental data respectively. We assume
that the psychophysical threshold is inversely related to
the d 0 and thus in Fig. 5d, we compare the average thresh-
olds across observers computed from data in Fig. 3 to the
scaled versions of the curves shown in Fig. 5c. As can be
seen in Fig. 5d, the model simulates the decorrelation func-
tion reasonably well. In addition, the downward vertical
shift of the decorrelation function as a result of training
can also be explained quantitatively by a reduction in neu-
ronal noise in the model. The model’s noise multiplier
parameter a was reduced from 0.02 to 0.005 to fit the
pre- and post-training data respectively. We also found
that systematic vertical shifts of the decorrelation function
could not be obtained by any reasonable manipulations of
neuronal tuning in the model. One point to be noted from
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these simulation results is that a change in neuronal noise
not only changes the noise in the disparity representation
but it also changes the relative disparity signal. In other
words, the mean and variance of the stochastic relative dis-
parity signal are not always independent. Another point to
be noted is that a multiplicative change in decorrelation
function can be achieved by changes in additive neuronal
noise. This occurs primarily due to the non-linear process-
ing of complex cells in the model.
4.2. Relationship to other models of perceptual learning

In our study, the training stimuli comprised of 0% dec-
orrelation of varying disparities. The pre- and post- train-
ing sessions included the same disparity range as the
training condition, and only varied in the decorrelation.
The fact that the improvement in stereothresholds at 0%
decorrelation transferred to more specific and difficult con-
ditions, comprised of higher decorrelation, is consistent
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with other general models of perceptual learning (Ahissar
& Hochstein, 1997, 2004; Liu & Weinshall, 2000). Based
on the modeling results, it is possible that the training
caused a reduction in noise in the neurons involved in dis-
parity processing. It is premature to make any specific con-
clusions about where and what caused the perceptual
learning of RDS depth discrimination, but we can say that
a reduction of noise in early disparity processing is suffi-
cient to account for the data presented here. There are
other general learning mechanisms (Dosher & Lu, 2001,
2005; Lu et al., 2005; Saarinen & Levi, 1995) that could
operate beyond the early disparity processing stages and
these mechanisms may also contribute to the learning phe-
nomenon reported here. A final possibility that cannot be
excluded based on the results of this study, is that the
improvement in depth discrimination is partly due to a gen-
eral cognitive improvement in the ability to perform the
task.

Karni and Sagi (1993) reported a 22 month and
32 month retention of performance in their texture discrim-
ination task. The post- learning session in this study was
retested in two subjects six months after they completed
the study to examine the long term retention of learning.
Both subjects showed remarkable six month retention of
the learning. This long lasting learning phenomenon may
be utilized to improve stereopsis in stereo deficient
observers.

In summary, perceptual learning of depth discrimination
of random dot stereograms is an adjustment within the brain
which lasts at least six months. This learning does not alter
the tolerance of the stereovision system to decorrelation in
the stimulus but rather improves sensitivity uniformly across
the entire range of decorrelation levels. Simulations of the
disparity energy model suggest that a reduction in the firing
rate noise in the early disparity processing neurons is suffi-
cient to account for the empirical data.
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Appendix A

A.1. Disparity energy model

The basic architecture of the model is similar to the
phase disparity model that is described in Patel et al.
(2006). There were two modifications made to the previous
model. In the previously described model, the monocular
neurons were orientation tuned. In the model used here,
the monocular neurons had one-dimensional horizontal
receptive fields and were thus isotropic (Qian & Zhu,
1997). This modification was done to reduce the simulation
time and should not substantially affect the generality of
the results. In the previously described model, the simple
cells and complex cells were in complete spatial registra-
tion, meaning that a complex cell at (i, j) spatial location
received signals from simple cells at (i, j) spatial location.
In the model used here, a uniform random spatial jitter
was introduced when signals from simple cells were com-
bined by a complex cell. In other words, a complex cell
at (i, j) spatial location received signals from simple cells
at (i ± m1, j ± n1) and (i ± m2, j ± n2) spatial locations
where m1, n1, m2 and n2 are uniformly distributed random
numbers between �8 and 8. This noise source was added to
the model to provide tolerance to low levels of
decorrelation.
A.2. Stimulus used for simulations

Each binocular stimulus consisted of a pair of images (Il

and Ir) of 100 · 100 pixels. The size of a pixel was 2 arcmin.
A pair of binary random-dot images called the seed images
(Sl and Sr) were created first to yield a desired level of dec-
orrelation. The desired level of decorrelation was set by
randomly mismatching a percentage of dots in the two
images. In other words, 100% decorrelation was set by hav-
ing 50% of the dots matched and 50% of the dots anti-
matched. In order to specify a horizontal stimulus disparity
of 0.2 arcmin, which is smaller than the size of a pixel, we
used a simple weighting technique as given below:

I l ¼ 0:1�ShiftðSl; 1Þ þ 0:9�Sl

I r ¼ Sr

ðA1Þ

where, Shift(Sl, 1) horizontally and circularly shift Sl by
1 pixel. For convention purposes, assume that a shift of 1
(�1) pixel generates 2 arcmin crossed (uncrossed) disparity.
We verified that for 0% decorrelation and in the absence of
internal neuronal noise, the disparity energy model re-
sponds to this sub-pixel disparity stimulus with reasonable
accuracy. In addition we also ran simulations with a stim-
ulus that had a 1 pixel disparity, i.e. with Il = Shift(Sl, 1)
and Ir = Sr, and found that the results were qualitatively
similar to those with sub-pixel disparity stimulus.

A.3. Simulation procedure

The simulations were run for various levels of decorrela-
tion and neuronal noise multiplier a. All simulations were
run for crossed as well as uncrossed stimulus disparity. For
each value of decorrelation and a, the disparity energy model
was run 120 times. A different set of images (Il and Ir) was
used for each run. For each disparity energy model run,
the smoothed disparity map produced by the model was ana-
lyzed. The mean and standard-deviation of the disparity val-
ues in the map were computed and saved for later analysis.

A.4. Analysis of simulation data

For each value of decorrelation and a, three summary
variables were computed by analyzing the mean and stan-
dard-deviation vectors of crossed (l̂c; r̂c) and uncrossed
(l̂u; r̂u) disparities. Each vector had 120 elements. The sum-
mary variables computed are as below:

Signal ¼ meanðl̂c � l̂uÞ ðA2Þ
Noise ¼ 0:5�meanðr̂c þ r̂uÞ ðA3Þ

d 0 ¼ 2�mean
l̂c � l̂u

r̂c þ r̂u

� �
ðA4Þ

where, mean is the arithmetic averaging function. The divi-
sion operator in Eq. (A4) represents an element by element
division. Signal, Noise and 1/d 0 are plotted in Fig. 5a, b, c,
and d, respectively.
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